sábado, 1 de diciembre de 2007

PROTEÍNAS

Las proteínas son compuestos químicos muy complejos que se encuentran en todas las células vivas: en la sangre, en la leche, en los huevos y en toda clase de semillas y pólenes. Hay ciertos elementos químicos que todas ellas poseen, pero los diversos tipos de proteínas los contienen en diferentes cantidades. En todas se encuentran un alto porcentaje de nitrógeno, así como de oxígeno, hidrógeno y carbono. En la mayor parte de ellas existe azufre, y en algunas fósforo y hierro.Las proteínas son sustancias complejas, formadas por la unión de ciertas sustancias más simples llamadas aminoácidos, que los vegetales sintetizan a partir de los nitratos y las sales amoniacales del suelo. Los animales herbívoros reciben sus proteínas de las plantas; el hombre puede obtenerlas de las plantas o de los animales, pero las proteínas de origen animal son de mayor valor nutritivo que las vegetales. Esto se debe a que, de los aminoácidos que se conocen, que son veinticuatro, hay nueve que son imprescindibles para la vida, y es en las proteínas animales donde éstas se encuentran en mayor cantidad.
Sanger Frederic:Nació en Rendcombe, Gloucestershire, en 1918. Bioquímico y premio Nobel británico. Estudió en la
Universidad de Cambridge y después de graduarse en 1939 dio clases en Cambridge y se dedicó a la investigación del metabolismo de los aminoácidos y la estructura de la insulina. Desarrolló un nuevo método para analizar la estructura molecular de la proteína y demostró que una molécula de insulina contiene dos cadenas de péptidos unidas entre sí por dos puentes de disulfuro. La investigación de Sanger facilitó los posteriores avances en el campo de la bioquímica de John Kendrew y Max perutz en Gran Bretaña, que hacia 1960 pudieron establecer las estructuras tridimensionales de las moléculas de las proteínas. En 1958 recibió el Premio Nobel de Química y en 1963 fue nombrado CBE (Comendador de la Orden del Imperio Británico). En 1980 Sanger fue galardonado de nuevo en el Premio Nobel de Química, esta vez por su desarrollo de un método por el cual se podía determinar rápidamente la secuencia nucleótida de los ácidos nucleicos. Este trabajo fue básico para el desarrollo de la ingeniería genética.
Kendrew John:Nació en el año de1917. Fue un Químico
inglés y profesor de la Universidad de Cambridge. Ganó el Premio Nobel en 1962 con Max Perutz, por aclarar la estructura de la mioglobina, proteína muscular que almacena oxígeno y lo cede a las células del músculo.Por análisis de la difracción de los rayos X estableció la representación espacial tridimensional de la mioglobina.


Síntesis de las proteínas.
Las instrucciones para la síntesis de las proteínas están codificadas en el ADN del núcleo. Sin embargo el ADN no actúa directamente, sino que transcribe su mensaje al ARNm que se encuentra en las células, una pequeña parte en el núcleo y, alrededor del 90% en el citoplasma. La síntesis de las proteínas ocurre como sigue:El ADN del núcleo transcribe el mensaje codificado al ARNm. Una banda del ADN origina una banda complementaria de ARNm.El ARN mensajero formado sobre el ADN del núcleo, sale a través de los poros de la membrana nuclear y llega al citoplasma donde se adhiere a un ribosoma. Allí será leído y descifrado el código o mensaje codificado que trae del ADN del núcleo.El ARN de transferencia selecciona un aminoácido específico y lo transporta al sitio donde se encuentra el ARN mensajero. Allí engancha otros aminoácidos de acuerdo a la información codificada, y forma un polipéptido. Varias cadenas de polipéptidos se unen y constituyen las proteínas. El ARNt queda libre.Indudablemente que estos procesos de unión o combinación se hacen a través de los tripletes nucleótidos del ARN de transferencia y del ARN mensajero. Además los ribosomas se mueven a lo largo del ARN mensajero, el cual determina qué aminoácidos van a ser utilizados y su secuencia en la cadena de polipéptidos. El ARN ribosómico, diferente del ARN y del ARNt y cuya estructura se desconoce, interviene también en el acoplamiento de aminoácidos en la cadena proteica.Las proteínas formadas se desprenden del ribosoma y posteriormente serán utilizadas por las células. Igualmente el ARN de transferencia, es "descargado" y el ARN mensajero ya "leído" se libera del ribosoma y puede ser destruido por las enzimas celulares o leído por uno o más ribosomas.La síntesis de las proteínas comienza por consiguiente en el núcleo, ya que allí el ADN tiene la información, pero se efectúa en el citoplasma a nivel de los ribosomas.
Transcripción del mensaje genético del ADN al ARN.
La biosíntesis de las proteínas comienza cuando un cordón de ARNm, con la ayuda de ciertas enzimas, se forma frente a un segmento de uno de los cordones de la hélice del ADN. (Las micrografías electrónicas indican que el ADN se desenrolla un poco para permitir la síntesis del ARN).El ARNm se forma a lo largo del cordón del ADN de acuerdo con la misma regla del apareamiento de las bases que regula la formación de un cordón de ADN, excepto en que en el ARNm el uracilo sustituye a la timina. Debido al mecanismo de copia, el cordón del ARNm, cuando se ha completado lleva una transcripción fiel del mensaje del ADN. Entonces el cordón de ARNm se traslada al citoplasma en el cual se encuentran los aminoácidos, enzimas especiales, moléculas de ATP, ribosomas y moléculas de ARN de transferencia.Una vez en el citoplasma, la molécula de ARN se une a un ribosoma. Cada tipo de ARNt engancha por un extremo a un aminoácido particular y cada uno de estos enganches implica una enzima especial y una molécula de ATP.En el punto en el que la molécula de ARNm toca al ribosoma, una molécula de ARNt, remolcando a su aminoácido particular, se sitúa en posición inicial.
A medida que el cordón de ARNm se desplaza a lo largo del ribosoma, se sitúa en su lugar la siguiente molécula de ARNt con su aminoácido. En este punto, la primera molécula de ARNt se desengancha de la molécula de ARNm. El ARN mensajero parece tener una vida mucho más breve, al menos en Escherichia coli. La duración promedio de una molécula de ARNm en E. Coli. es de dos minutos, aunque en otro tipo de células puede ser más larga. Esto significa que en E. Coli. la
producción continua de una proteína requiere una producción constante de las moléculas de ARNm apropiadas. De esta manera los cromosomas bacterianos mantienen un control muy rígido de las actividades celulares, evitando la producción de proteínas anormales que pudiera ocurrir por el posible desgaste de la molécula de ARNm.

No hay comentarios: